Rosehill Junior School

MATHS

Calculation Policy

Addition \& Subtraction

-O○○ \% $7-3=4$ $7-5=2$		
Add 1 and 2-digit numbers to 20 $8+5=13$ leading to		As well as supporting children with addition Numicon helps children to start to recognise odd and even numbers. When adding one-digit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. Different manipulatives can be used to represent this exchange. Use concrete resources alongside number lines to support children in understanding how to partition their jumps. To strengthen understanding of place value, children would partition the second number when adding mentally, making up the number bond to 10 .

Subtract 1 and 2-digit numbers to 20 counting back

12-3 = 9
counting on

12-9 = 3

leading to

When the children's understanding of place value is insecure, counting on will offer more success than counting backwards.

When subtracting one-digit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten.

Children should be encouraged to find the number bond to 10 when partitioning the subtracted number. Ten frames and number lines are particularly useful for this.

Year 2 Age-Related Expectations

Objective \& Expected Outcome	Models \& Images	Notes
Add 1 digit and 2-digit numbers to 100	$38+5=43$	When adding single digits to a two-digit number, children should be encouraged to count on from the larger number. They should also apply their knowledge of number bonds to add more efficiently e.g. $9+5$ is the same as $9+1+4$. Children need to begin to

												explore patterns and recognise
		1	2	3	4	5	6	7	8	9	10	that if $3+5$ is 8 then $30+50$ will
		11	12	13	14	15	16	17	18	19	20	be 80 .
		21	22	23	24	25	26	27	28	29	30	
		31	32	33	34	35	36	37	38)	39	(40)	Hundred squares, Numicon, ten
		41	42	(43)	44	45	46	47	48	49	50	children in finding the number
		51	52	53	54	55	56	57	58	59	60	bonds.
		61	62	63	64	65	66	67	68	69	70	
		71	72	73	74	75	76	77	78	79	80	
		81	82	83	84	85	86	87	88	89	90	
		91	92	93	94	95	96	97	98	99	100	
Subtract a 1-digit number from a 2-digit number (up to 100) counting back $87-23=64$ counting on $75-27=48$ leading to	$65-28=37$Tens Ones 年 61			Tens				One	(1)			At this stage, encourage children to use the formal column method when calculating alongside straws, base 10 (Dienes) or place value counters. As the numbers become larger, the straws become less efficient. Children can also use a blank number line to count on to find the difference. Encourage them to jump in multiples of 10 to become more efficient. When children use a number line, if they struggle to add 30 all at once, they need to be taught to chunk it into +10 then +10 then +10 with three separate jumps on the line.

Add two 2-digit numbers to 100 (strategies leading to columnar) $\begin{array}{r} 403 \\ +\frac{204}{60+7} \\ \hline 43+24=67 \end{array}$ leading to	$34+23=57$ or $43+24=67$ $43+20=63$ leading to without the visual	Start by adding multiples of 10. $34+20=54$ or $47+40=$ 87 to allow children to consolidate their understanding of increasing a number by 10. Some children may need to start with add bundles together, e.g. Bar models such as: allow children to really see the calculation and understand the parts that make up the whole but they don't help them to actually carry out the calculation at this stage.

Add three 1-digit numbers $7+6+3=16$ 10		When adding three 1-digit numbers, children should be encouraged to look for number bonds to 10 or doubles, to help them to add the numbers more efficiently. Not only does this strengthen the children's understanding of number bonds but it supports their understanding of commutativity. Manipulatives that highlight number bonds to 10 are effective when adding three 1-digit numbers.
Year 3 Age-Related Expectations		
Objective \& Expected Outcome	Models \& Images	Notes
Add numbers with up to 3-digits (strategies leading to columnar)	$265+164=429$ If children are struggling to see the numbers, revert back to number lines. For example, $265+164$ will become $265+100+60$ (maybe in blocks of 10 if needed) +4 . See examples below	Make sure that the children are secure with the Year 2 methods before moving onto these. Base 10 (Dienes) and Place Value counters are the most effective manipulatives when adding three-digit numbers. They allow children to see the calculation before moving onto the column methods. When using place value counters you can either use the place value counters with the numbers written on or put plain counters on a place value grid.

		Ensure that the children write out the calculation alongside any concrete resources so that they can see the links to the written method The numbers can be written in the jumps or above the jumps.
Subtract numbers with up to 3-digits $$ The position of the exchanges doesn't have to be exact (as long as it is in the right column). If you don't have the HTO written above, it gives you a little more space to write them in.	$435-273=162$ If children are struggling to see the numbers, revert back to number lines. For example, 265-164 will become 265-100-60 (maybe in blocks of 10 if needed) - 4 . See example below. If children struggle to count backwards on a numberline, encourage them to count on from the smallest number using their knowledge of number bonds. Step 1:	Base 10 (Dienes) and place value counters (or plain counters) on a place value grid are the most effective manipulative when subtracting numbers up to 3 digits. Ensure that children write their calculation out alongside any can see the links to the written method. When using the column method for subtraction, ensure use of the correct vocabulary of exchanging Using a different colour whilst exchanging also helps the clearly. to see the exchanges The numbers can be written in the jumps or above the jumps. The size of the jumps are not something for the children to worry about when drawing out number lines. It matters not if

Add numbers with up to 3 decimal
places

	$13.7-9.4=4.3$	
Year 6 Age-Related Expectations		
Objective \& Expected Outcome	Models \& Images	es
Add several numbers with more than 4 digits $\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 20,579 \end{array}$	$104,328+61,731=166,059$ $\begin{array}{r} 23.361 \\ 9.080 \\ 59.770 \\ +\quad 1 \cdot 300 \\ \hline 93.511 \\ 21 \end{array}$	If children are not at this level, look back to the Year 5 Age-Related Expectations for models and images. When adding decimals, ensure that zeros are used as place holders
Subtract several numbers with more than 4 digits.	$294,382-182,501=111,881$	If children are not at this level, look back to the Year 5

Multiplication \& Division

Year 2 Age-Related Expectations						
Objective \& Expected Outcome	Models \& Images					Notes
Solve one-step problems with multiplication $3 \times 5=5+5+5=15$ leading to $3 \times 5=5+5+5=15$						Children represent multiplication as repeated addition in many different ways In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record multiplication formally. In Year 2, children are introduced to the multiplication symbol. Children can use counters to explore arrays.
Solve one-step problems using division (sharing)	0 O		?	?	?	Children solve problems by sharing amounts into equal groups. In year 1, children use concrete and pictorial representations to solve problems. They are not expected to record divisions formally.

Solver | In year 2, children are |
| :--- |
| introduced to the division |
| symbol. |

Multiply a 2-digit number by a 1-digit number

	H	T	O	
		3	4	
\times			5	
	1	7	0	

> $15 \times 5=75$
> $10 \times 5=50$
> $5 \times 5=25$
> $50+25=75$

Teachers may decide to first look at the expanded column method before moving on to the short multiplication method.

The place value counters should be used to support the understanding of the method rather than supporting the multiplication, as children should use known times tables ($\mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10$ at Y2 and $\mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 8$ at Y3)

Children can also use their knowledge of partitioning to multiply a 2-digit number by a 1-digit number.

When children use the expanded version, they must write their multiplication at the side of their columns as shown in the examples.

When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones.

Straws, Base 10, linking cubes and place value counters can all be used to share numbers into equal groups.

Part-whole models can provide children with a clear written method that matches the concrete representation.
Divide a 2-digit by a l-digit (with
exchanges but no remainders)

Objective \& Expected Outcome				Models \& Images							Notes
Multiply a 3-digit number by a 1-digit number											When moving on to 3-digit by 1-digit multiplication, encourage children to move towards the short, formal written method. Base 10 and place value counters continue to support the understanding of the written method, as children should use known times tables ($\mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10$ at Y 2 and $\mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 8$ at Y3) Limit the number of exchanges needed in the questions and move children away from resources when multiplying larger numbers. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so that children can focus on the use of the written method.
	H	T	0								
	2	4	5								
\times			4								
	9	8	0								
	1	2									

Divide a 2－digit by a 1－digit with remainders

		1	3	
	4	5	1_{2}	

Divide a 3－digit by a 1－digit with remainders

$$
\frac{169 r^{2}}{58^{\circ} 46}
$$

표표	
Tens	Ones
（Tmmmor	ere
TITITIT	－
	－
	－En

When dividing numbers with remainders，children can use Base 10 and place value counters to exchange one ten for ten ones．

Starting with equipment outside the place value grid will highlight remainders，as they will be left outside the grid once the equal groups have been made．

Flexible partitioning in a part－whole model supports this method．

When using the short division method（commonly known as the bus－stop method），children use grouping．Starting with the largest place value，they group by the divisor．

Modelling without exchanges
844 divided by $4=211$

Modelling with exchanges：
856 divided by $4=214$

Children can continue to use place value counters to share 3－digit numbers into equal groups．Children should start with the equipment outside of the place value grid before sharing the hundreds，tens and ones equally between the rows． This method can also help to highlight remainders．

Year 5 Age-Related Expectations									
Objective \& Expected Outcome					Models \& Images				Notes
Multiply number leading \square	4-d Th 1 5 2	git H 8 4	T 2 7 1	er by a l-digit 0 6 3 8	$1,826 \times 3=5,478$				When multiplying 4-digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so that children can focus on the use of the written method.
Multiply a 4-digit number by a 2-digit number leading to					$2,739 \times 28=76,692$				When multiplying 4-digits by 2-digits, children should be confident in the written method.

Multiply a 2-digit number by a
3-digit number

leading to

Th	H	T	O
	2	3	4
\times		3	2
	4	6	8
7	10	2	0
7	4	8	8

Divide a 4-digit by a 1-digit with remainders

> leading to

\times	200	30	4
30	6,000	900	120
2	400	60	8

$234 \times 32=7,488$

$$
8,532 \div 2=4,266
$$

Place value counters or plain counters can be used on a place value grid to support children to divide 4-digits by a 1-digit number. Children can also draw their own counters and group them through a more pictorial method.

Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges. As you can see in the image, it complicates things.

Year 6 Age-Related Expectations

